United States Patent

US009471370B2

(12) (10) Patent No.: US 9,471,370 B2
Marinelli, III et al. 45) Date of Patent: Oct. 18, 2016
(54) SYSTEM AND METHOD FOR STACK-BASED 5,428,776 A 6/1995 Rothfield
BATCH EVALUATION OF PROGRAM 5,542,089 A 7/1996 Lindsay et al.
INSTRUCTIONS 5,608,899 A 3/1997 Li et al.
. 5,613,105 A 3/1997 Xbikowski et al.
(71) Applicants: Eugene E. Marinelli, II1, Palo Alto, 5,701,456 A 12/1997 Jacopi et al.
CA (US); Yogy Namara, Palo Alto, CA 5,724,575 A 3/1998 Hoover et al.
(us) 5,794,228 A 8/1998 French et al.
5,794,229 A 8/1998 French et al.
. . 5,857,329 A 1/1999 Bingh
(72) Inventors: Eugene E. Marinelli, II1, Palo Alto, 5011138 A 6/1999 Limé% ;m
CA (US); Yogy Namara, Palo Alto, CA 5918225 A 6/1999 White et al.
(as) 6,208,985 Bl 3/2001 Krehel
. . . (Continued)
(73) Assignee: Palantir Technologies, Inc., Palo Alto,
CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this CA 2828264 4/2014
patent is extended or adjusted under 35 CA 2829266 4/2014
U.S.C. 154(b) by 83 days. (Continued)
(21) Appl. No.: 13/657,656 OTHER PUBLICATIONS
(22) Filed: Oct. 22, 2012 Philip Lee Bogle “Reducing cross domain call overhead using
. o batched futures” Massachusetts Institute of Technology; May 1994
(65) Prior Publication Data See particularly section S, pp. 59-69. Available from http://dspace.
US 2014/0115589 Al Apr. 24, 2014 mit.edu/bitstream/handle/172 1. 1/32608/31281268.pdf?sequence-
1'*
(51) Int. CL (Continued)
GO6F 9/46 (2006.01)
GO6F 9/54 (2006.01) Primary Examiner — Meng An
GO6F 9/44 (2006.01) Assistant Examiner — Willy W Huaracha
(52) US.CL (74) Attorney, Agent, or Firm — Hickman Palermo
CPC ............ GO6F 9/466 (2013.01); GO6F 9/4425 Becker Bingham LLP
(2013.01); GO6F 9/547 (2013.01); GOGF
2209/541 (2013.01) 67 ABSTRACT
(58) Field of Classification Search A batching module that inspects call stacks within a stack
CPC .. GO6F 9/547; GOGF 9/466; GOGOF 2209/541; evaluator to identify current expressions that can be evalu-
GOGF 9/4425 ated in batch with other expressions. If such expressions are
USPC s - 718/101 identified, the corresponding stacks are blocked from further
See application file for complete search history. processing and a batch processing request for processing the
. expressions is transmitted to the application server. The
(56) References Cited

U.S. PATENT DOCUMENTS

5,418,950 A
5,428,737 A

5/1995 Li et al.
6/1995 Li et al.

application server processes the expressions in batch and
generates a value for each of the expressions. The blocked
stacks are then populated with the values for the expressions.

13 Claims, 8 Drawing Sheets

[ 202
204(0) 204(1) 204(2) | - 204(N-1)
Frames 206
Value 208 Expression 210
Val 212 Exp 214




US 9,471,370 B2

Page 2
(56) References Cited 2007/0168336 Al 7/2007 Ransil et al.
2007/0178501 Al 82007 Rabinowitz et al.
U.S. PATENT DOCUMENTS 2007/0192281 Al 82007 Cradick et al.
2007/0260582 Al  11/2007 Liang
6.236.994 Bl 5/2001 Swartz et al. 2008/0126344 Al 5/2008 Hoffman et al.
6.280.334 Bl 9/2001 Reiner et al. 2008/0126951 Al 5/2008 Sood et al.
6311181 Bl  10/2001 Lee of al. 2008/0155440 Al 6/2008 Trevor et al.
6321274 Bl 11/2001 Shakib et al. 2008/0196016 Al 82008 Todd
6.643.613 B2  11/2003 McGee et al. 2008/0201313 Al 8/2008 Dettinger et al.
6745382 Bl 62004 Zothner 2008/0215543 Al 9/2008 Huang et al.
6.851,108 Bl 2/2005 Syme et al. 2008/0267386 Al 10/2008 Cooper
6.857.120 Bl 2/2005 Arnold et al. 2009/0006150 Al 1/2009 Prigge et al.
6.877.137 Bl 4/2005 Rivette et al. 2009/0007056 Al 1/2009 Prigge et al.
6.976.024 Bl  12/2005 Chavez et al. 2009/0043762 Al 2/2009 Shiverick et al.
7028223 Bl 4/2006 Kolawa et al. 2009/0055487 Al 2/2009 Moraes et al.
7.085.800 B2 /2006 Kashyap 2009/0083275 Al 3/2009 Jacob et al.
7.155.728 Bl  12/2006 Prabhu et al. 2009/0094217 Al 4/2009 Dettinger et al.
7916.133 B2 5/2007 Wu et al. 2009/0144747 A1 6/2009 Baker
7.406,592 BL  7/2008 Polyudov 2009/0161147 Al 6/2009 Klave
7.519.589 B2 4/2009 Charnock et al. 2009/0172674 Al* 7/2009 Bobak et al. ................. 718/101
7546353 B2 6/2009 Hesselink et al, 2009/0187556 A1 7/2009 Ross et al.
7,610,290 B2 10/2009 Kruy et al. 2009/0193012 Al 7/2009 Williams
7,627489 B2 12/2009 Schaeffer et al. 2009/0199047 Al 8/2009 Vaitheeswaran et al.
7,783,679 B2 8/2010 Bley 2009/0248721 Al  10/2009 Burton et al.
7.853.573 B2 12/2010 Warner et al. 2009/0282068 Al  11/2009 Shockro et al.
7.877.421 B2 12011 Berger et al. 2009/0299830 Al  12/2009 West et al.
7.908.521 B2 3/2011 Sridharan et al. 2010/0011282 Al 1/2010 Dollard et al.
7.979.424 B2 7/2011 Dettinger et al. 2010/0073315 Al 3/2010 Lee et al.
8.073.857 B2  12/2011 Sreekanth 2010/0082671 Al 4/2010 Li et al.
8.103.962 B2 1/2012 Embley et al. 2010/0145902 Al 6/2010 Boyan et al.
8.417,715 Bl 4/2013 Bruckhaus et al. 2010/0161646 Al 6/2010 Ceballos et al.
8.429,194 B2 4/2013 Aymeloglu et al. 2010/0169376 Al 7/2010 Chu
8,433,702 Bl 4/2013 Carrino et al. 2010/0169405 Al 72010 Zhang
8.433.703 Bl 4/2013 Carrino et al. 2010/0199167 Al 8/2010 Uematsu et al.
8499287 B2  7/2013 Shafi et al. 2010/0313119 Al 12/2010 Baldwin
8560494 Bl  10/2013 Downing 2011/0035396 Al 2/2011 Merz et al.
8,639,552 Bl 1/2014 Chen et al. 2011/0041084 A1 2/2011 Karam
8.799.867 Bl 82014 Peri-Glass <t al. 2011/0066497 Al 3/2011 Gopinath et al.
8,909,597 B2  12/2014 Aymeloglu et al. 2011/0074811 Al 3/2011 Han_son et al.
8924429 B1 12/2014 Fisher et al. 2011/0093490 Al 4/2011 Schindlauer et al.
8935201 Bl  1/2015 Fisher et al. 2011/0131547 Al 6/2011 EBlaasar
0031981 Bl 52015 Potter et al. 2011/0145401 Al 6/2011 Westlake
0.105.000 Bl /2015 White et al. 2011/0208822 Al 82011 Rathod
0.292.388 B2 3/2016 Fisher et al. 2011/0252282 Al 10/2011 Meek et al.
2002/0184111 Al 12/2002 Swanson 2011/0258216 Al 10/2011 Supakkul et al.
2003/0004770 Al 1/2003 Miller et al. 2011/0270871 Al 11/2011 He et al.
2003/0023620 Al 1/2003 Trotta 2011/0321008 A1  12/2011 Jhoney et al.
2003/0105833 Al 6/2003 Daniels 2012/0078595 Al 3/2012 Balandin et al.
2003/0212670 Al* 11/2003 Yalamanchi ....... GOGF 17/2241 2012/0102022 A1 4/2012 Miranker et al.
2004/0088177 Al 5/2004 Travis et al. 2012/0159449 Al 6/2012 Arnold et al.
2004/0098731 Al 5/2004 Demsey et al. 2012/0173381 Al 7/2012 Smith
2004/0103088 Al 5/2004 Cragun et al. 2012/0174057 Al 7/2012 Narendra et al.
2004/0126840 Al 7/2004 Cheng et al. 2012/0188252 Al ~ 7/2012 Law
2004/0139212 Al 7/2004 Mukherjee et al. 2012/0284719 Al* 11/2012 Pha.n_ etal. .oooovnvienne 718/101
2004/0153837 Al 82004 Preston et al. 2013/0024268 Al 1/2013 Manickavelu
2004/0193608 Al 9/2004 Gollapudi et al. 2013/0024731 Al 1/2013  Shochat et al.
2004/0254658 Al* 12/2004 Sherriff ........... GO5B 19/41865 2013/0054551 Al 2/2013 Lange
700/87 2013/0086482 Al 4/2013 Parsons
2005/0004911 A1 1/2005 Goldberg et al. 2013/0096968 Al 4/2013 Van Pelt et al.
2005/0021397 Al 1/2005 Cui et al. 2013/0198624 Al 8/2013 Aymeloglu et al.
2005/0120080 Al 6/2005 Weinreb et al. 2013/0225212 Al 82013 Khan
2005/0183005 Al 82005 Denoue ef al. 2013/0226944 Al 8/2013 Baid et al.
2005/0226473 Al 10/2005 Ramesh 2013/0232220 Al 9/2013 Sampson
2005/0278286 Al  12/2005 Djugash et al. 2014/0012886 Al 1/2014 Downing et al.
2006/0004740 Al 1/2006 Dettinger et al. 2014/0074888 Al 3/2014 Potter et al.
2006/0070046 Al 3/2006 Balakrishnan et al. 2014/0108074 Al 4/2014 Miller et al.
2006/0074967 Al 4/2006 Shaburov 2014/0115589 Al 4/2014 Marinelli, IIT et al.
2006/0080616 Al 4/2006 Vogel et al. 2014/0115610 Al1* 4/2014 Marinelli et al. ............ 719/330
2006/0116991 Al 6/2006 Calderwood 2014/0214579 Al 7/2014 Shen et al.
2006/0129992 Al 6/2006 Oberholtzer et al. 2014/0244388 Al 8/2014 Manouchehri et al.
2006/0142949 Al 6/2006 Helt 2015/0112641 Al 4/2015 Faraj
2006/0209085 Al 9/2006 Wong et al. 2015/0269030 Al 9/2015 Fisher et al.
2006/0271884 Al  11/2006 Hurst 2016/0026923 Al 1/2016 Erenrich et al.
2006/0288046 Al  12/2006 Gupta et al.
2007/0005582 Al 1/2007 Navratil et al. FOREIGN PATENT DOCUMENTS
2007/0027851 Al 2/2007 Kruy et al.
2007/0094248 Al 4/2007 McVeigh et al. DE 102014103482 9/2014
2007/0113164 Al 5/2007 Hansen et al. EP 1647908 4/2006
2007/0150805 Al 6/2007 Misovski EP 2634745 9/2013



US 9,471,370 B2
Page 3

(56) References Cited
FOREIGN PATENT DOCUMENTS

EP 2743839 6/2014
EP 2778986 9/2014
EP 2921975 9/2015
GB 2366498 3/2002
GB 2508503 1/2015
GB 2508293 4/2015
HK 1194178 9/2015
NZ 622485 3/2015
NZ 616212 5/2015
NZ 616299 7/2015
WO WO 00/34895 6/2000
WO WO 2010/030917 3/2010
WO WO 2013/030595 3/2013

OTHER PUBLICATIONS

Wikipedia, “Machine Code” p. 1-5.*

Stamos et al. “Remote Evaluation”, Journal ACM Transactions on
Programming Languages and Systems (TOPLAS) vol. 12 Issue 4,
Oct. 1990 pp. 537-564.*

New Zealand Intellectual Property Office, “First Examination
Report” in application No. P089467NZ:RMM, dated Oct. 9, 2013,
2 pages.

Current Claims in application No. P089467NZ:RMM, dated Oct.
2013, 14 pages.

New Zealand Intellectual Property Office, “First Examination
Report” in application No. PO90010NZ:RM, dated Oct. 9, 2013, 1
page.

Current Claims in application No. P090010NZ:RM, dated Oct.
2013, 4 pages.

U.S. Appl. No. 13/608,864, filed Sep. 10, 2012, First Interview
Office Action, Mar. 17, 2015.

U.S. Appl. No. 13/657,656, filed Oct. 22, 2012, Office Action, Oct.
4, 2014.

U.S. Appl. No. 13/728,879, filed Dec. 27, 2012, Office Action, Mar.
17, 2015.

U.S. Appl. No. 13/827,627, filed Mar. 14, 2013, Office Action, Mar.
2, 2015.

U.S. Appl. No. 13/831,791, filed Mar. 15, 2013, Office Action, Mar.
4, 2015.

U.S. Appl. No. 14/254,757, filed Apr. 16, 2014, Notice of Allow-
ance, Sep. 10, 2014.

U.S. Appl. No. 14/254,773, filed Apr. 16, 2014, Notice of Allow-
ance, Aug. 20, 2014.

U.S. Appl. No. 14/304,741, filed Jun. 13, 2014, Final Office Action,
Mar. 3, 2014.

U.S. Appl. No. 14/304,741, filed Jun. 13, 2014, Office Action, Aug.
6, 2014.

U.S. Appl. No. 14/304,741, filed Jun. 13, 2014, Notice of Allow-
ance, Apr. 7, 2015.

“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011,
pp. 2.

“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15,
2014 in 6 pages.

Bae et al., “Partitioning Algorithms for the Computation of Average
Iceberg Queries,” DaWaK 2000, LNCS 1874, pp. 276-286.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,”
The NCBI Handbook, Oct. 2002, pp. 1-10.

Chazelle et al., “The Bloomier Filter: An Efficient Data Structure for
Static Support Lookup Tables,” SODA ’04 Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2004, pp. 30-39.

Delcher et al,, “Identifying Bacterial Genes and Endosymbiont
DNA with Glimmer,” Biolnformatics, vol. 23, No. 6, 2007, pp.
673-679.

Delicious, <http://delicious.com/> as printed May 15, 2014 in 1
page.

Donjerkovic et al., “Probabilistic Optimization of Top N Queries,”
Proceedings of the 25th VLDB Conference, Edinburgh, Scotland,
1999, pp. 411-422.

Fang et al., “Computing Iceberg Queries Efficiently,” Proceedings
of the 24th VLDB Conference New York, 1998, pp. 299-310.
“Frequently Asked Questions about Office Binder 97,” http://web.
archive.org/web/20100210112922/http://support.microsoft.com/kb/
843147 printed Dec. 18, 2006 in 5 pages.

Han et al., “Efficient Computation of Iceberg Cubes with Complex
Measures,” ACM Sigmod, May 21-24, 2001, pp. 1-12.

Ivanova et al., “An Architecture for Recycling Intermediates in a
Column-Store,” Proceedings of the 35”Sigmod International Con-
ference on Management of Data, Sigmod *09, Jun. 29, 2009, p. 309.
Jacques, M., “An extensible math expression parser with plug-ins,”
Code Project, Mar. 13, 2008. Retrieved on Jan. 30, 2015 from the
internet:  <http://www.codeproject.com/Articles/7335/An-exten-
sible-math-expression-parser-with-plug-ins>.

Kahan et al., “Annotea: an Open RDF Infastructure for Shared Web
Annotations”, Computer Networks, Elsevier Science Publishers
B.V,, vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608.

Karp et al., “A Simple Algorithm for Finding Frequent Elements in
Streams and Bags,” ACM Transactions on Database Systems, vol.
28, No. 1, Mar. 2003, pp. 51-55.

Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Pro-
cess,” The NCBI Handbook, Oct. 2002, pp. 1-21.

Leela et al., “On Incorporating Iceberg Queries in Query Proces-
sors,” Technical Report, TR-2002-01, Database Systems for
Advanced Applications Lecture Notes in Computer Science, 2004,
vol. 2973.

Liu et al., “Methods for Mining Frequent Items in Data Streams: An
Overview,” Knowledge and Information Systems, vol. 26, No. 1,
Jan. 2011, pp. 1-30.

Madden, Tom, “Chapter 16: The Blast Sequence Analysis Tool,”
The NCBI Handbook, Oct. 2002, pp. 1-15.

Mendes et al., “TcruziKB: Enabling Complex Queries for Genomic
Data Exploration,” IEEE International Conference on Semantic
Computing, Aug. 2008, pp. 432-439.

Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence
Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.

Russell et al., “Nitelight: A Graphical Tool for Semantic Query
Construction,” 2008, pp. 10.

Sigrist, et al., “Prosite, a Protein Domain Database for Functional
Characterization and Annotation,” Nucleic Acids Research, 2010,
vol. 38, pp. D161-D166.

Sirotkin et al., “Chapter 13: The Processing of Biological Sequence
Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.

Smart et al., “A Visual Approach to Semantic Query Design Using
a Web-Based Graphical Query Designer,” 16th International Con-
ference on Knowledge Engineering and Knowledge Management
(EKAW 2008), Acitrezza, Catania, Italy, Sep. 29-Oct. 3, 2008, pp.
16.

“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp.
29.

Notice of Acceptance for New Zealand Patent Application No.
622485 dated Nov. 24, 2014.

Notice of Acceptance for New Zealand Patent Application No.
616212 dated Jan. 23, 2015.

Official Communication for European Patent Application No.
14159175.0 dated Jul. 17, 2014.

Official Communication for European Patent Application No.
14159629.6 dated Jul. 31, 2014.

Official Communication for European Patent Application No.
14159629.6 dated Sep. 22, 2014.

Official Communication for New Zealand Patent Application No.
622414 dated Mar. 24, 2014.

Official Communication for New Zealand Patent Application No.
622484 dated Apr. 2, 2014.

Official Communication for New Zealand Patent Application No.
622485 dated Nov. 21, 2014.

Official Communication for Great Britain Patent Application No.
1404574.4 dated Dec. 18, 2014.

Official Communication for New Zealand Patent Application No.
616299 dated Jan. 26, 2015.



US 9,471,370 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Official Communication for Canadian Patent Application No.
2807899 dated Oct. 24, 2014.

Official Communication for Australian Patent Application No.
2013237658 dated Feb. 2, 2015.

Official Communication for Australian Patent Application No.
2013237710 dated Jan. 16, 2015.

Official Communication for Australian Patent Application No.
2014201580 dated Feb. 27, 2015.

Official Communication for New Zealand Patent Application No.
P090010NZ:RMN dated Jan. 26, 2015.

Claims for Australian Patent Application No. 2013237658 dated
Feb. 2015, 4 pages.

Claims for Australian Patent Application No. 2013237710 dated
Jan. 2015, 4 pages.

Claims for New Zealand Patent Application No. PO90010NZ:RMN
dated Jan. 2015, 4 pages.

Ballesteros et al., “Batching: A Design Pattern for Efficient and
Flexible Client/Server Interaction,” Transactions on Pattern Lan-
guages of Programming, Springer Berlin Heildeberg, 2009, pp.
48-66.

Bogle et al, “Reducing Cross-Domain Call Overhead Using
Batched Futures,” SIGPLAN No. 29, 10 (Oct. 1994) pp. 341-354.
Notice of Acceptance for New Zealand Patent Application No.
616299 dated Apr. 7, 2015.

Official Communication for German Patent Application No. 10
2013 221 057.4 dated Mar. 23, 2015.

Official Communication for German Patent Application No. 10
2013 221 052.3 dated Mar. 24, 2015.

Official Communication for Canadian Patent Application No.
2829266 dated Apr. 28, 2015.

Official Communication for Canadian Patent Application No.
2828264 dated Apr. 28, 2015.

Claims in Canadian Application No. 2,829,266, dated Apr. 2015, 4
pages.

Official Communication for European Patent Application No.
15159520.4 dated Jul. 15, 2015.

Official Communication for European Patent Application No.
14159175.0 dated Feb. 4, 2016.

Canadian Intellectual Property Office, “Search Report” in applica-
tion No. 2,829,266, dated Apr. 1, 2016, 4 pages.

Canadian Claims in application No. 2,829,266, dated Apr. 2016, 5

pages.

Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM
InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp.
35-137.

Bouajjani et al., “Analysis of Recursively Parallel Programs,”
PLDI0O9: Proceedings of the 2009 ACM Sigplan Conference on
Programming Language Design and Implementation, Jun. 15-20,
2009, Dublin, Ireland, pp. 203-214.

Goldstein et al., “Stacks Lazy Threads: Implementing a Fast Parallel
Call,” Journal of Parallel and Distributed Computing, Jan. 1, 1996,
pp. 5-20.

Jenks et al., “Nomadic Threads: A Migrating Multithreaded
Approach to Remote Memory Accesses in Multiprocessors,” Par-
allel Architectures and Compilation Techniques, Oct. 20, 1996, pp.
2-11.

Wollrath et al., “A Distributed Object Model for the Java System,”
Proceedings of the 2™ Conference on USENEX, Conference on
Object-Oriented Technologies (COOTS), Jun. 17, 1996, pp. 219-
231.

Official Communication for Canadian Patent Application No.
2807899 dated Jul. 20, 2015.

Official Communication for Netherlands Patent Application No.
2011613 dated Aug. 13, 2015.

Official Communication for Netherlands Patent Application No.
2011627 dated Aug. 14, 2015.

Official Communication for Netherlands Patent Application No.
2012437 dated Sep. 18, 2015.

Official Communication for European Patent Application No.
13157474.1 dated Oct. 30, 2015.

U.S. Appl. No. 13/608,864, filed Sep. 10, 2012, Final Office Action,
Jun. 8, 2015.

U.S. Appl. No. 13/608,864, filed Sep. 10, 2012, Office Action
Interview, Mar. 17, 2015.

U.S. Appl. No. 13/657,635, filed Oct. 22, 2012, Office Action, Mar.
30, 2015.

U.S. Appl. No. 13/767,779, filed Feb. 14, 2013, Notice of Allow-
ance, Mar. 17, 2015.

U.S. Appl. No. 14/304,741, filed Jun. 13, 2014, Final Office Action,
Mar. 3, 2015.

U.S. Appl. No. 14/304,741, filed Jun. 13, 2014, Pre Interview
Communication, Aug. 6, 2014.

Official Communication for Canadian Patent Application No.
2,828,264 dated Apr. 11, 2016.

Claims for Canadian Patent Application No. 2,828,264, dated Apr.
2016, 4 pages.

* cited by examiner



US 9,471,370 B2

Sheet 1 of 8

Oct. 18, 2016

U.S. Patent

001

L NNOI4
S01
YIAYMIS NOILYOITddY
oLl —_—
- 21901 21901 zmr_w<3._<>m
80l < » | $S300V IHOLS VLVA
JHOLS V1Vd
-— Oort
ZIT
13QOW 123rgo 1901
ONIAIZOTY LNdNI
A
\ 4
0ct ¥O1 8L
I1NAON ONIHOLYS 21901 IDINYIS HOLVNTVAT MOVLS
20t
NOLLYOITddY




U.S. Patent Oct. 18, 2016 Sheet 2 of 8 US 9,471,370 B2

STACK 202(0) STACK 202(1) | ..... STACK 202(N-1)
STACK EVALUATOR
118
FIGURE 2A
[ 202
204(0) 204(1) 2042) | - 204(N-1)
Frames 206
Value 208 Expression 210
Val 212 Exp 214

FIGURE 2B



US 9,471,370 B2

Sheet 3 of 8

Oct. 18, 2016

U.S. Patent

€ 34NOI4

(42
31NAON ONIHO1Vvd

90¢
ANIONT ONIMDOTaNN

v0oE
ANIONT ONIMOO18

20g
3NIONT NOLLOAJSNI

81l

Y

HOLVNTVAI MOVLS
(T-NJ20C (1)eoe (0202
AJVLS ADVLS AJVLS




U.S. Patent Oct. 18, 2016 Sheet 4 of 8 US 9,471,370 B2

/ 400

SPREADSHEET
APPLICATION
102
EXTERNAL
MEMORY
404
SYSTEM MEMORY
402
A A
Y \ 4
CENTRAL PROCESSING UNIT
406
A
A 4
INPUT DEVICE DISPLAY DEVICE
410 412

FIGURE 4



U.S. Patent

Oct. 18, 2016 Sheet 5 of 8

GENERATE A STACK FOR A PROGRAM
SUBROUTINE
501

'

GENERATE A CALL FRAME ASSOCIATED
WITH A PROGRAM INSTRUCTION
INCLUDED IN THE PROGRAM
SUBROUTINE
502

v

FOR EACH EXPRESSION IN CALL FRAME,
GENERATE A DIFFERENT CHILD FRAME
504

'

TRANSITION STACK TO EVALUATION
STATE
506

'

O

BEGIN EVALUATION OF THE EXPRESSION
INCLUDED IN A NEXT CHILD FRAME (THE
CURRENT FRAME)

508

v

RECEIVE REQUEST TO INSPECT THE
CURRENT FRAME
510

®

FIGURE 5A

US 9,471,370 B2

500



U.S. Patent Oct. 18, 2016 Sheet 6 of 8 US 9,471,370 B2

<

IS THE Yes WAIT FOR
STACK BLOCKED? UNBLOCKING
512 514

COMPLETE EVALUATION OF THE
EXPRESSION IN THE CURRENT FRAME
516

ARE THERE
MORE CHILD FRAMES?
518

TRANSITION
HAS THE Yes| STACKTO
CALL FRAME BEEN EVALUATED? COMPLETED
520 STATE
524

BEGIN EVALUATION OF THE CALL FRAME
(THE CURRENT FRAME)
522

FIGURE 5B




U.S. Patent Oct. 18, 2016 Sheet 7 of 8 US 9,471,370 B2

600

INSPECT EXPRESSION TO BE EVALUATED
WITHIN EACH UNBLOCKED STACK IN THE
STACK EVALUATOR
602

.

IDENTIFY EXPRESSIONS INCLUDED IN THE
UNBLOCKED STACKS THAT SHOULD BE
BATCH PROCESSED
604

'

BLOCK EACH UNBLOCKED STACK THAT
INCLUDES AN IDENTIFIED EXPRESSION
606

ARE
ALL STACKS
BLOCKED OR COMPLETE?
608

Yes

PARTITION EXPRESSIONS ASSOCIATED
WITH BLOCKED STACKS INTO GROUPS THAT
ARE TO BE BATCH PROCESSED
610

v

FOR EACH PARTITION, TRANSMIT BATCH
PROCESSING CALL TO APPLICATION
SERVER
612

»

FIGURE 6A



U.S. Patent Oct. 18, 2016 Sheet 8 of 8 US 9,471,370 B2

¢

FOR EACH PARITION, RECEIVE RESULT OF
BATCH PROCESSING CALL FROM
APPLICATION SERVER
614

!

FOR EACH EXPRESSION IN EACH GROUP,
MANIPULATE CORRESPONDING STACK TO
FILL IN RESULT
616

A 4

UNBLOCK ALL BLOCKED PROGRAMS
618

FIGURE 6B



US 9,471,370 B2

1
SYSTEM AND METHOD FOR STACK-BASED
BATCH EVALUATION OF PROGRAM
INSTRUCTIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present disclosure relates generally to data access and
analysis and, more specifically, to a system and method for
evaluating programs in batch.

2. Description of the Related Art

Software applications, such as financial analysis applica-
tions, allow users to create and interact with large software
data objects. Such data objects organize data relevant to the
software application and provide methods that allow opera-
tions to be performed on the data. In some situations, the
operations are performed on a large set of data and require
high processing power as well as high bandwidth access to
a database.

Typically, for the efficient processing of such operations,
the bulk of the processing occurs on a server that is external
to the computing device that executes the software applica-
tion. In operation, the software application transmits calls
associated with the operations to be performed on the data,
and the calls are processed on the server. The results of the
processing are then transmitted back to the software appli-
cation for presentation to the user.

One drawback to such an implementation is that the
server receives and processes one call per operation to be
performed. In situations where operations are performed on
an extremely large set of data, serving a large amount of
calls can slow down the server and, in some cases, crash the
server. Such a scenario is extremely undesirable because the
server is extremely slow and in some cases entirely unus-
able, thereby affecting the overall user experience.

As the foregoing illustrates, what is needed in the art is a
mechanism for efficiently managing and processing a large
volume of calls to be processed on a server.

SUMMARY OF THE INVENTION

One embodiment of the invention is computer-imple-
mented method for evaluating a program instruction within
the stack evaluator. The method includes the steps of gen-
erating a call frame associated with the program instruction
within a call stack, wherein the call frame includes a first
expression specified by the program instruction, generating
a child frame associated with the first expression within the
call stack, receiving a modification to the child frame that
sets the value of the first expression within the child frame,
and processing the call frame based at least in part on the
value of the first expression within the child frame.

Advantageously, because a single batch processing
request is transmitted to the application server for a group of
similar expressions, the number of processing requests
received by the application server is reduced. As a result, the
application server is not burdened with a large amount of
requests at any given time. Therefore, the overall processing
efficiency of the application server is increased and the
overall processing latency of the application server is
reduced.

BRIEF DESCRIPTION OF THE FIGURES

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized

10

15

20

25

30

35

40

45

50

55

60

2

above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not
to be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1 illustrates a system that enables an application to
be processed in batch-mode, according to one embodiment
of the invention;

FIG. 2A illustrates a more detailed view of the stack
evaluator of FIG. 1, according to one embodiment of the
invention;

FIG. 2B illustrates a more detailed view of the stack of
FIG. 2A, according to one embodiment of the invention;

FIG. 3 illustrates a more detailed view of the batching
module of FIG. 1, according to one embodiment of the
invention;

FIG. 4 is an exemplary system within which the applica-
tion of FIG. 1 could execute, according to one embodiment
of the invention;

FIGS. 5A and 5B set forth a flow diagram of method steps
for evaluating a program instruction within the stack evalu-
ator, according to one embodiment of the invention; and

FIGS. 6 A and 6B set forth a flow diagram of method steps
for processing related program instructions in batches,
according to one embodiment of the invention.

DESCRIPTION OF EXAMPLE EMBODIMENTS

FIG. 1 illustrates a system 100 that enables an application
to be processed in batch-mode. As shown, the system 100
includes a application 102, service logic 104, an application
server 106 and a data store 108.

The application 102 is a software program that allows a
user to create, analyze and interact with workflows having
one or more documents. A document is typically composed
of several data objects, each having a particular type and
function. The data objects that could make up a document
are described in greater detail below. A user, via a program-
ming interface, can typically write program routines that
interact with the data objects to generate the results or
analysis needed. Again, some examples of such instructions
are described below.

The service logic 104 is an infrastructure layer that,
among other things, allows the application 102 to commu-
nicate with the application server 106. In one embodiment,
the service logic 104 includes a messaging service (not
shown) that allows the application 102 and the application
server 106 to communicate asynchronously via messages.
The service logic 104 includes a stack evaluator 118 and a
batching module 120. The stack evaluator 118 is an infra-
structure module that manages the stack-based evaluation of
program routines associated with the application 102. Each
program routine is associated with a call stack that includes
multiple frames, each frame storing information about a
particular portion of the program routine. The batching
module 120 allows for the batch processing on the applica-
tion server 106 of program routines being evaluated within
the stack evaluator 118. The functions of the stack evaluator
118 and the batching module 120 is described in greater
detail below in conjunction with FIGS. 2A-6B.

The application server 106 includes logical elements such
as input receiving logic 110, an object model 112, evaluation
logic 114 and data store access logic 116. The application
server 106 may be implemented as a special-purpose com-
puter system having the logical elements shown in FIG. 1.
In one embodiment, the logical elements comprise program



US 9,471,370 B2

3

instructions stored on one or more machine-readable storage
media. Alternatively, the logical elements may be imple-
mented in hardware, firmware, or a combination thereof.

The input receiving logic 110 receives inputs from dif-
ferent applications executing within the system 100, such as
the application 102, via the service logic 104. Inputs include,
but are not limited to, processing requests, data access/
storage requests and expression evaluation requests. The
input receiving logic 110 transmits requests received from
the different applications to logical elements within the
application server 106 that are configured to process those
requests.

The object model 112 is a model that specifies a universe
of data objects, relationships between the data objects,
higher-order data objects generated based on one or more
zero-order data objects in the universe, higher-order data
objects generated based on other higher-order data objects,
and auxiliary entities related to the universe of data objects.
The data objects may be created by users via data object
creation mechanisms exposed in different applications, such
as the application 102. In one embodiment, the object model
112 includes only references to the data objects and data
related to those data objects is stored within the data store
108. Persons skilled in the art would understand that any
other data objects can be included in the object model 112.

The evaluation logic 114 receives expression evaluation
requests from applications, such as the application 102, via
the input receiving logic and evaluates the expressions
specified in those requests. An expression typically includes
a reference to one or more data objects included in the object
model 112 and specifies one or more operations to be
performed on those data objects. The evaluation logic 114,
when processing a particular expression, may create,
modify, delete and store data objects that are associated with
the universe of data objects included in the object model
112. In addition, the evaluation logic 112 transmits the
results of processing the particular expression to the appli-
cation that transmitted the expression evaluation request.

In an embodiment, application server 106 comprises data
store access logic 116. Data store access logic 116 may
comprise a set of program instructions which, when
executed by one or more processors, are operable to access
and retrieve data from data store 108. For example, data
store access logic 116 may be a database client or an Open
Database Connectivity (ODBC) client that supports calls to
a database server that manages data store 108. Data store
108 may be any type of structured storage for storing data
including, but not limited to, relational or object-oriented
databases, data warehouses, directories, data files, and any
other structured data storage.

FIG. 2A illustrates a more detailed view of the stack
evaluator 118 of FIG. 1, according to one embodiment of the
invention. As shown, the stack evaluator 118 includes mul-
tiple stacks 202.

The stack evaluator 118 generates a stack 202 correspond-
ing to each program subroutine (referred to herein as a
“subroutine”) associated with the application 102. Typically,
a subroutine includes multiple instructions, where each
instruction includes one or more expressions to be evalu-
ated. As discussed above, an expression may include an
argument, a parameter and/or a metric, as described above.
When evaluating a particular instruction, the stack evaluator
118 generates a different frame for each expression within
that instruction. For example, an array frame is generated for
each argument of an instruction and a call frame is generated
for performing a specified operation on the arguments that
were evaluated in the array frame(s).

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2B illustrates a more detailed view of a stack 202 of
FIG. 2A, according to one embodiment of the invention. As
shown, the stack 202 includes a frames portion 206, a value
portion 208 and an expression portion 210.

The frames portion 206 includes multiple frames 204,
where each frame 204 corresponds to a particular evaluation
iteration of the subroutine corresponding to the stack 202.
When a particular frame is ready for evaluation, the stack
202 transitions to an “evaluation state.” During evaluation,
the expressions within the current frame are first extracted
and pushed into the expression array 210, such as exp 214.
The value of the expressions are then evaluated and pushed
into the value array 208. If an expression being evaluated is
nested, the evaluation of the expression in the current frame
204 generates one or more new frames 204 that are evalu-
ated before evaluating the current frame. Once the evalua-
tion of each frame in the stack 202 is completed, the stack
202 transitions to a “completed state.”

FIG. 3 illustrates a more detailed view of the batching
module 120 of FIG. 1, according to one embodiment of the
invention. As shown, the batching module 120 includes an
inspection engine 302, a blocking engine 304 and an
unblocking engine.

The batching module 120 monitors the execution of
program subroutines within the stack evaluator 118 to iden-
tify program subroutines that can be processed within the
application server 106 in batch. More specifically, for each
stack 202, the inspection engine 302 analyzes a current
expression within a frame 204 of the stack 202 to determine
whether the evaluation of the expression should be evaluated
in batch with other similar expressions.

To determine whether a particular expression should be
evaluated in batch with other similar expressions, the
inspection engine 302 first determines the type of the
expression. An expression may be an economic index, an
instrument, a metric, an input object, an output object, a
parameter, a time series, a higher-order-object, or any
higher-order object in the object model. Based on the type of
expression, the inspection engine 302 then determines
whether the type of the expression falls within a pre-
determined category of expressions that should be processed
in batch with other expressions of the same type or a similar
type. For example, an expression that includes a metric for
which the evaluation involves a database access or a model
access should be processed in batch with other expressions
that include metrics for which the evaluation involves data-
base accesses or model accesses.

As another example, consider the following program
instruction: return this.close+this.open, where “this” refers
to a time series. There are multiple expressions within the
program instruction, such as “this.close,” “+,” and “thi-
s.open.” In one scenario, the program instruction may be
evaluated multiple times, each evaluation generating a dif-
ferent stack 202. In such a scenario, the inspection engine
302 may identify the expressions “this.close” and “thi-
s.open” as expressions that should be evaluated in batch with
similar expressions. Therefore, for each stack 202, the
corresponding “this.close” expression is evaluated in batch
with the “this.close” expressions in the remaining stacks
202. Similarly, for each stack 202, the corresponding “thi-
s.open” expression is evaluated in batch with the “this.open”
expressions in the remaining stacks 202.

For a particular stack 202, once the inspection engine 302
determines that the current expression should be evaluated
in batch with other similar expressions, the blocking engine
304 blocks the processing of the current expression and the
stack 202, in general. At this instant, the stack 202 transi-



US 9,471,370 B2

5

tions to a “blocked state.” Therefore, at any given point, a
stack 202 is either in an evaluation state, a blocked state or
a completed state. When all the stacks 202 are either in a
blocked state or a completed state, the blocking engine 304
prepares the current expressions in each of the blocked
stacks 202 (referred to herein as the “blocked expressions™)
for evaluation on the application server 106 in batch. The
blocking engine 304 divides the blocked expressions into
partitions, where blocked expressions in a particular parti-
tion are each associated with at least one similar character-
istic. For example, each blocked expression in a particular
partition may need a database call to be executed by the
application server 106.

Once the blocked expressions are divided into partitions,
the blocking engine 304 dispatches, per partition, a single
call to the application server 106 for evaluating all of the
expressions in that partition. The application server 106
evaluates the expression in a manner described above in
conjunction with FIG. 1. The application server 106 trans-
mits the results associated with each expression in a partition
to the unblocking engine 306. For each result associated
with a particular expression, the unblocking engine 306
updates the stack 202 corresponding to the expression to
store the result. The updated stack 202 is then unblocked and
the frames 204 within the stack 202 continue to be pro-
cessed.

The inspection engine 302 continues to inspect the stacks
202 to identity expressions that can be evaluated in batch. In
turn, the blocking engine 304 continues to block stacks 202
and dispatch calls for evaluating similar expressions in batch
until each of the stacks 202 is in a completed state. In such
a manner, similar expressions from different stacks 202 are
processed in batch within the application server 106, thus
increasing the efficiency of the overall system.

FIG. 4 is an exemplary system within which the applica-
tion 102 of FIG. 1 could execute, according to one embodi-
ment of the invention. As shown, the system 400 includes a
system memory 402, an external memory 404, a central
processing unit (CPU) 406, an input device 410 and an
display device 412.

The system memory 402 includes the application 102
previously described herein. The system memory 402 is a
memory space, usually a random access memory (RAM),
that temporarily stores software programs running within the
system 400 at any given time. The CPU 406 executes a
sequence of stored instructions associated with and/or trans-
mitted from the various elements in the computer system
400. The external memory 404 is a storage device, e.g. a
hard disk, for storing data associated with the application
102. The input device 410 is an end-user controlled input
device, e.g. a mouse or keyboard, that allows a user to
manipulate various aspects of the application 102. The
display device 412 may be a cathode-ray tube (CRT), a
liquid crystal display (LCD) or any other type of display
device.

FIGS. 5A and 5B set forth a flow diagram of method steps
for evaluating a program instruction within the stack evalu-
ator, according to one embodiment of the invention.
Although the method steps are described in conjunction with
the system for FIG. 1-4, persons skilled in the art will
understand that any system configured to perform the
method steps, in any order, is within the scope of the
invention.

The method 500 begins at step 501, where the stack
evaluator 118 generates a stack 202 corresponding to a
program subroutine associated with the application 102 that
is being evaluated. At step 502, the stack evaluator 118

5

10

15

20

25

30

35

40

45

50

55

60

65

6

generates a call frame associated with a particular program
instruction included in the program subroutine. As discussed
above, each program instruction within a program subrou-
tine includes one or more expressions to be evaluated. An
expression may be an argument, a parameter and/or a metric,
as described above. Therefore, the call frame associated with
the particular program instruction includes the one or more
expressions to be evaluated.

At step 504, the stack evaluator 118 generates a different
child frame for evaluating each expression within that
instruction. For example, an array frame is generated for
each argument of an instruction. At step 506, the stack
evaluator 118 transitions the stack 202 to an evaluation state.
At step 508, the stack evaluator 118 begins the evaluation of
an expression included in a next child frame to be evaluated
(referred to herein as the “current frame™). An expression is
evaluated either within the stack evaluator 118 itself or
needs to be processed within the application server 106 as
described above in conjunction with FIG. 1.

At step 510, the stack evaluator 118 receives a request
from the inspection engine 302 to inspect the current frame.
As described above, each time a new frame is being evalu-
ated, the inspection engine analyzes a current expression that
is to be evaluated within the frame to determine whether the
evaluation of the expression should be executed in batch
with other similar expressions. The process of inspection
and batch execution is described in detail with respect to
FIGS. 6A and 6B.

At step 512, the stack evaluator 118 determines whether
the stack 202 is in a blocked state. As discussed above and
described in greater detail with respect to FIGS. 6A and 6B,
for a particular stack 202, if the inspection engine 302
determines that the current expression should be evaluated
in batch with other similar expressions, then the blocking
engine 304 blocks the processing of the current expression
and the stack 202, in general. If, at step 512, the stack
evaluator 118 determines that the stack 202 is in a blocked
state, then the method 500 proceeds to step 514, where the
stack evaluator 118 waits until the stack 202 is unblocked by
the unblocking engine 306. However, if, at step 512, the
stack evaluator 118 determines that the stack 202 is notin a
blocked state, then the method 500 proceeds to step 516,
where the stack evaluator 118 completes the evaluation of
the expression in the current frame.

At step 518, the stack evaluator 118 determines whether
any child frames were generated at step 504 are still not
evaluated. If so, then the method proceeds to step 508
previously described herein. If the stack evaluator 118
determines that all the child frames were generated at step
504 have been evaluated, then the method 500 proceeds to
step 520. At step 520, the stack evaluator 118 determines
whether the call frame that was generated at step 502 has
been evaluated.

If, at step 520, the stack evaluator 118 determines that the
call frame that was generated at step 502 has not been
evaluated, then the method 500 proceeds to step 522. At step
522, the stack evaluator 118 begins the evaluation of the call
frame based on the expressions that were evaluated via the
child frames. The method then proceeds to step 510 previ-
ously described herein.

If, however, at step 520, the stack evaluator 118 deter-
mines that the call frame that was generated at step 502 has
already been evaluated, then the method 500 proceeds to
step 524. At step 524, the stack evaluator 118 transitions the
state of the stack 202 to the completed state. The method 500
then ends.



US 9,471,370 B2

7

As discussed above, the application 102 is associated with
one or more program subroutines and each program sub-
routine includes multiple program instructions. Persons
skilled in the art would recognize that the stack evaluator
118 executes the method steps described with respect to
FIGS. 5A and 5B for each program instruction included in
each program subroutine associated with the application
102, as discussed above.

FIGS. 6A and 6B set forth a flow diagram of method steps
for processing related program instructions in batches,
according to one embodiment of the invention. Although the
method steps are described in conjunction with the system
for FIG. 1-4, persons skilled in the art will understand that
any system configured to perform the method steps, in any
order, is within the scope of the invention.

The method 600 begins at step 602, where the inspection
engine 302, for each stack 202, inspects an expression
within the stack 202 that is to be evaluated. At step 604, the
inspection engine 302, based on the inspection, identifies
one or more expressions included in the unblocked stacks
that should be batch processed. As previously described, the
inspections engine 302 identifies such expressions based on
a type of the expression, the number of inputs specified in
the expression, the type of operation to be performed, etc.

At step 606, the blocking engine 304 blocks the process-
ing of the expressions identified at step 604 and the stacks
202 that include those expressions. In one embodiment, the
blocking engine 304 transitions the state of each of the
stacks 202 to a blocked state. At step 608, the blocking
engine 304 determines whether all the stacks are in a
blocked or completed state. If, at step 608, at least one stack
is not in a blocked or completed state, then the method 600
returns to step 602. If, however, at step 608, all the stacks are
in a blocked or completed state, then the method 600
proceeds to step 610.

At step 610, the blocking engine 304 divides the expres-
sions included in the blocked stacks into partitions, where
expressions in a particular partition are each associated with
at least one similar characteristic. For example, each blocked
expression in a particular partition may be a database call to
be executed by the application server 106. At step 612, once
the blocked expressions are divided into partitions, the
blocking engine 304 dispatches, for each partition, a single
call to the application server 106 for evaluating each of the
expressions in that partition in batch. The application server
106 evaluates the expression in a manner described above in
conjunction with FIG. 1.

At step 614, the unblocking engine 306 receives, for each
partition, the results for each expression in the partition. At
step 616, for each received result, the unblocking engine 306
updates the stack 202 corresponding to the expression for
which the result was generated to store the result. At step
618, the unblocking engine 306 unblocks each of the
updated stacks 202, which then continue to be processed.

Advantageously, because a single batch processing
request is transmitted to the application server for a group of
similar expressions, the number of processing requests
received by the application server is reduced. As a result, the
application server is not burdened with a large amount of
requests at any given time. Therefore, the overall processing
efficiency of the application server is increased and the
overall processing latency of the application server is
reduced.

One embodiment of the invention may be implemented as
a program product for use with a computer system. The
program(s) of the program product define functions of the
embodiments (including the methods described herein) and

15

30

35

40

45

50

55

60

65

8

can be contained on a variety of computer-readable storage
media. Illustrative computer-readable storage media
include, but are not limited to: (i) non-writable storage
media (e.g., read-only memory devices within a computer
such as CD-ROM disks readable by a CD-ROM drive, flash
memory, ROM chips or any type of solid-state non-volatile
semiconductor memory) on which information is perma-
nently stored; and (ii) writable storage media (e.g., floppy
disks within a diskette drive or hard-disk drive or any type
of solid-state random-access semiconductor memory) on
which alterable information is stored.
Another embodiment of the invention may be imple-
mented as a program product deployed for use over a
network. In such an embodiment, the program product may
be accessed via a web browser.
The invention has been described above with reference to
specific embodiments. Persons skilled in the art, however,
will understand that various modifications and changes may
be made thereto without departing from the broader spirit
and scope of the invention as set forth in the appended
claims. The foregoing description and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.
We claim:
1. A computer-implemented method for batch evaluating
a program instruction within a stack evaluator, the method
comprising:
generating a call frame associated with the program
instruction within a call stack that is associated with a
program subroutine which includes the program
instruction, wherein the call frame includes one or
more expressions specified by the program instruction;

generating a child frame associated with a first expression
of the one or more expressions within the call stack;

initiating evaluation of the first expression associated with
the child frame;
automatically determining, in response to the initiating,
whether the first expression associated with the child
frame should be sent for batch processing by an appli-
cation server based on a particular characteristic in
common between the first expression and each of one
or more other expressions;
transitioning the call stack into blocked state, in response
to determining that the first expression should be sent
for batch processing by the application server;

sending the first expression and each of the one or more
other expressions to the application server;

in response to the application server processing the first

expression associated with the child frame, receiving a
modification to the child frame that sets a value of the
first expression within the child frame;

unblocking the call stack; and

evaluating the call frame based at least in part on the value

of the first expression within the child frame.

2. The method of claim 1, further comprising, after
generating the child frame associated with the first expres-
sion, transitioning the call stack to a stack evaluation state.

3. The method of claim 1, wherein automatically deter-
mining whether the first expression associated with the child
frame should be sent for processing by the application server
comprises:

determining a first type of expression of the first expres-

sion;

determining whether the first type of expression is an

expression from among types of expressions pre-deter-
mined to be expressions that should be processed in
batch;



US 9,471,370 B2

9

when the first type of expression is an expression from
among the types of expressions pre-determined to be
expressions that should be processed in batch, deter-
mining whether the first type of expression of the first
expression and a second type of expression of each of
the one or more other expressions is the same or similar
to each other;
further comprising, when the first type of expression of
the first expression and the second type of expression of
each of the one or more other expressions are the same
or similar to each other, sending the first expression and
the one or more other expressions to the application
server to be processed in batch by the application
server.
4. The method of claim 1, further comprising generating
a second call frame associated with the program instruction
within the call stack, wherein the second call frame includes
a second expression specified by the program instruction,
and generating a child frame associated with the second
expression within the call stack.
5. The method of claim 4, wherein processing the first
expression includes the execution of a database call.
6. The method of claim 1, further comprising receiving a
request from a software module to inspect the child frame,
wherein the software module applies the modification to the
child frame in response to the inspection of the child frame.
7. The method of claim 6, wherein the inspection of the
child frame comprises analyzing one or more characteristics
associated with the first expression.
8. A non-transitory computer readable medium storing
instructions that, when executed by a processor, cause the
processor to perform batch evaluating a program instruction
within a stack evaluator, by performing the steps of:
generating a call frame associated with the program
instruction within a call stack that is associated with a
program subroutine that includes the program instruc-
tion, wherein the call frame includes one or more
expressions specified by the program instruction;

generating a child frame associated with a first expression
of the one or more expressions within the call stack;

initiating evaluation of the first expression associated with
the child frame;
automatically determining, in response to the initiating,
whether the first expression associated with the child
frame should be sent for batch processing by an appli-
cation server based on a particular characteristic in
common between the first expression and each of one
or more other expressions;
transitioning the call stack into blocked state, in response
to determining that the first expression should be sent
for batch processing by the application server;

sending the first expression and each of the one or more
other expressions to the application server;

in response to the application server processing the first

expression associated with the child frame, receiving a

10

15

20

25

30

35

40

45

50

10

modification to the child frame that sets a value of the
first expression within the child frame;

unblocking the call stack; and

evaluating the call frame based at least in part on the value

of the first expression within the child frame.

9. The computer readable medium of claim 8, further
comprising instructions that, when executed by a processor,
cause the processor to perform, after generating the child
frame associated with the first expression, transitioning the
call stack to a stack evaluation state.

10. The computer readable medium of claim 8, wherein
the instructions which when executed cause performing
automatically determining whether the first expression asso-
ciated with the child frame should be sent for processing by
the application server comprise instructions that, when
executed by a processor, cause the processor to perform:

determining a first type of expression of the first expres-

sion;

determining whether the first type of expression is an

expression from among types of expressions pre-deter-
mined to be expressions that should be processed in
batch;

when the first type of expression is an expression from

among the types of expressions pre-determined to be
expressions that should be processed in batch, deter-
mining whether the first type of expression of the first
expression and a second type of expression of each of
the one or more other expressions is the same or similar
to each other;

further comprising, when the first type of expression of

the first expression and the second type of expression of
each of the one or more other expressions are the same
or similar to each other, sending the first expression and
the one or more other expressions to the application
server to be processed in batch by the application
server.

11. The computer readable medium of claim 8, further
comprising instructions that, when executed by a processor,
cause the processor to perform generating a second call
frame associated with the program instruction within the call
stack, wherein the second call frame includes a second
expression specified by the program instruction, and gener-
ating a child frame associated with the second expression
within the call stack.

12. The computer readable medium of claim 8, further
comprising instructions that, when executed by a processor,
cause the processor to perform receiving a request from a
software module to inspect the child frame, wherein the
software module applies the modification to the child frame
in response to the inspection of the child frame.

13. The computer readable medium of claim 12, wherein
the inspection of the child frame comprises analyzing one or
more characteristics associated with the first expression.

#* #* #* #* #*



